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SUMMARY

The nonadiabatic theory of electron-hydrogen scattering is applied

to the s-wave scattering of positrons by atomic hydrogen. This zeroth

order problem is considerably more difficult than the corresponding one

for electron-hydrogen scattering. If we assume that the most extensive

of Rotenberg's calculation relating strictly to the zeroth order problem

is an adequate approximation, then the present calculations support the

conclusion that his final phase shifts are more correct than those of

Schwartz. The nonadiabatic theory is also developed for higher partial

wave scattering. The portion of the coupled set of equations which gives

the major contribution to the phase shifts can readily be isolated. A

first approximation of the truncated p-wave equations is obtained; the

corresponding phase shifts are found to be positive, but much smaller

than those of Bransden.
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POSITRON-HYDROGENSCATTERING

by

Aaron Temkin

Goddard Space Flight Cctzh'r

INTRODUCTION

The obtaining of reliable positron-hydrogen phase shifts has proven to be a very elusive task in

spite of the fact that rigorous upper bounds exist for the scattering length (References 1 and 2) and

in spite of the fact that in the latter reference as many as 50 variational parameters were used in

obtaining the scattering length and phase shifts. The uncertainty in Schwartz's work has resulted

from a recent calculation of Rotenberg (Reference 3) using a novel expansion in terms of Sturmian

functions. His phase shifts are considerably larger than those of Schwartz. Further discussion of

these differing results will be given later in this paper.

It should be noted, however, the con-

flicting results notwithstanding, that the

phenomenological aspects of this problem

are clear (sketched in Figure 1). At close

distances the positron feels the repulsion

of the positive nucleus and at far dis-

tances the attraction of the induced dipole

moment of the hydrogen atom. These two

extremes must be connected in some way.

In Figure 1 the overall potential (solid

curve) is taken to be the sum of the two

dashed curves, one representing the re-

pulsive I-Iartree potential

and the other representing a phenomeno-

logical polarization potential

-a

Vp (r 2 + d 2) 2 '

where a : 4.5do 3 is the well-known po-

larizability of the hydrogen atom, and d is
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Figure 1--PhenomenologicaJ potentials describing the
scattering of positrons from hydrogen.



an adjustable parameter. In Table 1 we have given the phase shifts as a function of k for two values

of d, together with the phase shifts of Schwartz (Reference 2) and Rotenberg (Reference 3). At k = 0.2

we have included the resu3t of the present calculation. The column for d - _ corresponds to the ab-

sence of polarization potential. The phase shifts of this static approximation have been computed

before (Reference 4) and are negative in accord with the repulsive nature of Hartree potential. The

next column, d = 1.225, has a special significance for the positron-hydrogen problem. The fact that

these phase shifts are closer to and larger than Rotenberg's may be of significance.

O ct

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Table 1

s-Wave Phase Shifts in Various Calculations.

d : i:k,

0.58

- O.0580

-0.1145

-0.]68

-0.2181

- 0.2636

- O.3043

- 0.340

d = 1.225

0.21

0.29

0.31

0.29

0.26

0.23

0.19

Phase Shift (radians)

Reference 2

-2.10

0.151

0.188

0.168

0.120

O.062

0.007

- 0.054

Reference 3

< - 2.7

0.180

0.232

0.179

0.129

O.068

0.010

- 0.04

Nonadiabatict

0.22

*The k : 0 entries are scattering lengths,

tlacluding relative s- and p-waves only.

The argument from which the value d _ 1.225 is derived is surely very old (Reference 5). It is

based on the observation that the potential which the positron sees (exclusive of its interaction with

the nucleus) is identical to the energy of the electron in the combined field of the positron and the

nucleus. However this energy is trivially calculable in the limit that the positron approaches the

nucleus. In that case the electron sees simply a coulomb field of charge Z = 2. In other words we

must have

r_OL
1(r =

where n is the principal quantum member of the electron in its ground state (if we are dealing with

the scattering by hydrogen in its ground state). Therefore using the value n = 1, Z = 2, and a -- 9/2,

the known polarizability of hydrogen, we can solve ford: d = (9/4) '/4 _ 1.225.



The remainder of this paper will be concerned with nonadiabatic theory of positron-hydrogen

scattering. The quantitative results of this investigation are restricted to k = 0.2, since we are

mainly concerned with establishing whether Schwartz's or Rotenberg's phase shifts are more correct.

The calculations herein support the latter's results and, to that extent, agree with the phenomenologi-

cal result previously stated.

THE NONADIABATICTHEORY

The nonadiabatic theory starts with the decomposition of the s-wave function,*

12, (r,, H, !!,2) = _1r2 (2_*1:"_2%(_,%)Pz(co-_"12), (1)

which is complete in view of the fact that the Hamiltonian

1 8 2 1 8 2 [ 1_ 1 0 8 2

: - -- 2 rl - r r2 - _U _ _) , sin r)_, 1 4 -- -H rl 0r 1 2 _)r2 2 sin,_12 0¢;12 _12 2 rl

2 2

r 2 r12

depends only upon the three coordinates rl, r2, :_12. As in electron-hydrogen problems these co-

ordinates refer to the distance from the nucleus of the incoming particle(positron in this case) and

the bound electron, and the angle between the respective radius vectors. One of the two salient dif-

ferences between this and the electron-hydrogen problem is the changed signs of 2/rl and- 2/r12

potentials. Here they are repulsive and attractive respectively. Thus the Hamiltonian is manifestly

unsymmetrical with respect to r_ and H, which implies that,t, (r_, r 2, i_2 ) cannot be symmetrical--

the second difference. Both these differences have profound consequences on the present problem as

compared with the electron-hydrogen problem.

Substitution of Equation 1 into the SehrSdinger equation

gives rise to the coupled set of equations

H 't' E 'g (2)

where

8r12 * Or 2 [([ + 1) r( 2 + r2-2 + E + + M;; dPz M;mqbrnm(±_)

M;m :- 1/(2/ _ l_[2rn_ 1) _ -- Cn+l ;ran
r>

n=O

*See Appendix A for list of symbols.



with

C:._ = P_ (cos_)) P (cosO)P (cos,q) sinOdd
0

the integral of three Legendre polynomials (Reference 7). The dependence of the M_m

that there are two different equations depending on whether r I or r 2 is the larger.

_0, for example, is more explicitly:

on r<"/r_ +' means

The equation for

/ 2 rmZI2 + E + q_0 - 2(2rn+ 1 _-1/2 2

rn=1

?_12 + E - r_1 * q_0"- = - 2(2m+ 1) °1/2 --q_<r2m+lm
m=l

(4)

where

fqb, I" r 1 < r 2
_; _ > rl > r 2

The boundary conditions are ,D,(r 1 0): 0 qS_(0, r2) as long as we are below the threshold for

inelastic scattering. Also, we have

and

lira ¢bt sit, (kr, _,_;)RI_ (r2) 5to

I" 1 "_ce

r 2 _c_

The latter condition corresponds to the statement that below the inelastic threshold there are no states

of a bound positron and a free electron; thus the wave function must vanish in the proper limit.

Since we have, in effect, two equations in two contiguous regions, appropriate matching conditions

are required. Obviously they are

(_'< I r

; : @[_

rl=r2 I mr 2



and

1=r2 rl=r 2 (5)

The zeroth order problem is defined by neglecting the right side of Equation 4:

(_,_2 + E _-?_)q,o _°) 0, r_>r 2

....._12 _ E- r_ + %_0>. o. r 1' r 2

(6a)

(6b)

The boundary conditions for %<0) are

order phase shift % comes from the

in complete analogy to those for ¢o"

requirement that

lira *o (°) sin (kr, + ;5o)RI_ (r2) "

r 1 , i_

In particular the zeroth

The zeroth order problem corresponds to a hydrogen atom and an incoming positron which sees

no charge at all as long as it is outside the orbital electron, but which sees a repulsive (nuclear) po-

tential when it is inside the electron. For this configuration the electron sees a doubly charged nucleus.

The basic relation between 5 and 5o is

obtained by the usual procedure of pre-

multiplication and integration of the ¢0 _°_

equation by % and vice-versa (see Ref-

erence 6). In this case the domain in-

tegration is shown in Figure 2. The area

integrals involving 5,2 are converted to

line integrals, and we use the diagonal

boundary conditions (Equation 5) for ¢0

and the counterpart for ¢o (°_,

IIDo(O)" Irl=r2 ([Do(O)> rl=r2

rl=r 2 rl=r 2

to show that the line integrals along s 3

and s 4 cancel each other. The only

g
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Figure 2--The domains of integration in obtaining the basic

relation (Equation 7) For posltron-hydrogen scattering.



contribution comes from s 2' and we obtain

L L]:" F m

sin (:' - :_o) k-' 2(2m + 1! -b: (trl dr2 4_°(°) r _+'%'
m 1

(7)

CALCULATIONSINVOLVING THE NONADIABATICTHEORY

From the verbal intepretation of the zeroth order problem we see clearly that it is a much cruder

approximation of the complete positron-hydrogen scattering problem than tile corresponding zeroth

order problem for electron-hydrogen scattering. In particular it neglects the attraction of the positron

to the electron and thus gives rise to negative phase shifts (for :o), whereas the work of Spruch and

Rosenbcrg (Reference i) shows that the final must be positive as k approaches 0. The inadequacy

in the description of the region r, r2 has a further consequence which can be demonstrated

pictorially.

In Figure 3 we have sketched the probability of finding the electron at r, and the positron at "2 as

a function of ,2" As a result of the electron-positron attraction this probability must rise sharply

for :',2' o. Remembering that the basic decomposition (Equation I) is in terms of Legendre polynom-

ials, imagine that Figure I refers to an angular distribution curve for a differential scattering

process. Such a process would be described as having large forward angle scattering, and this in turn

would mean the contribution of many partial waves. In terms of the present formalism this corre-

z_

_2

._a
m

u _ 7r

2

0,,, ANGLE BETWEEN r, AND r, (radians)

Figure 3--The probabllity of finding a positron and a hydrogenic

electron at distancesr I andr 2 from the origin asa function of
the angle between the radil and vectors.

sponds to the contribution of many relative

partial waves, and this means that Equation

2 cannot be expected to converge as rapidly

as in the electron-hydrogen problem.

In the electron-hydrogen calculation, we

also assumed, in addition to the assumption

that there is a reasonably uniform convergence

in q)_ for increasing _, that the contribution

from the configuration space r_ -_ r I was

small. The above discussion shows that

the latter approximation is not justified. We

shall therefore confine ourselves to solving

the coupled set of equations;

2 2 F-) 2 r<212 + E _ r_ - r-i+ 1)0_ ¢5 _ ? % ' (Sa)

XI2 ÷E ± -t

2 2 2 4 rr2_.) _+ r2 rl 4 r +S- 4)1

2 r<

r/ % ' (8b)

6



which were obtained by truncating Equation 3 beyond ¢1 but without making any assumption

about r "/r .+1
4 / > °

First it is necessary to solve the zeroth order problem defined by Equation 6 and the boundary

conditions. Assuming that ¢0¢°) is known, we can consider a first approximation of ¢t as the solution of

- 2-1 + ÷ E + -- - -- + -- + .8 01 (0) < • (9)

12 r> r_/

The following sum rules are useful in the subsequent development:

¢0 (0) 4 + .8 ¢(0) dr t dr 2 : -- --
12 , _ r> 2 (epo(0)) dr 1 dr 2 , (10a)

2,_ , 2ep0 12 + + .8 ¢1 drldr2 = --1/3 --r>2 (ego) 2 - (¢1)2] drl dr2 " (lOb)

From Equations 8b and 9 we can also derive

(¢1 (°) ¢o - qbl¢0 (°)) r>2 drl dr2 : 0 . (11)

We can write

¢1 = co}o)
¢ A¢ 1 ,

¢o -- qbo(°) + 5¢0 ;

Equation 11 now implies

rV ¢1 (°) A¢odrl dr2 : ¢o (°) &_Pl drl dr2 " (12)

A sufficient condition for the satisfaction of Equation 12 is

¢_o) A¢° = ¢o¢°)_¢1 •

This equality is almost certainly too strong to be exactly true, but it is difficult to see why it should

not be satisfactory as an approximation. Further, writing

_¢, : c ¢_o).(r,, _2) , (la)



we can put Equation 10b into the form:

2C + r_ 2 - .8 ¢1 (°) _(r 1

rc }{v )+ C2 _o_O) 1 ! _ _ 2
_'o v _ r2 .8 O{ °)

r2) dr I dr 2

[R (r 1 r2)t 2 dr 1 dr 2

. £:_f 4C £_'f r. [(q,o(O) )
? _ (%<o))2 d_ ld_ +73 73

2(3)-' 2C2 4P0(0))2 - (qbl(0))2 g(r 1 r2) 2drldr2 (14)

In writing A¢ in the form of Equation 13 we consider g(r 1 r2) a fixed function, and C a constant

determined by the solution of the quadratic equation (Equation 14). We have chosen

g (rl r2) : (7-_-) exp (- _) " (15)

This function vanishes at r 1 = 0, r 2 = 0; is continuous with continuous derivative across r 1 r 2 ; and

has a maximum at rl - r2.

In order to evaluate the integrals in Equation 14, it is also necessary to know ¢(0). This can be

handled just as in the electron-hydrogen problem (Reference 6), viz., we append a parameter D to the

adiabatic form of 'Pit0) :

1- 12 _ D e r2 + r 22

where D is determined such that Equation 8a is satisfied. Thus we are left with the difficult problem

of evaluating %(0). The expansion used in the electron-hydrogen case simply will not work here. In

the region r_ < r 2 there is only one separable solution of Equation 6b; in addition, it is difficult to

formulate a useful expression which will minimize the deviation from both boundary conditions simul-

taneously (Equation 5).

It should be noted, however, that as in the electron-hydrogen problem (Reference 6) any attack on

the complete problem with functions of rt and r 2 can only approximate the zeroth order problem. At

least three approximations have been carried out which fall into this category. One is the static ap-

proximation, the second an (unsymmetrical) close-coupling approximation with ls-2s- 3s hydrogenic

states included (Reference 4), and the third that part of Rotenberg's calculation (Reference 3) in which

no _,2 dependence is contained. It was originally thought that the static approximation would be suf-

ficient for quantitative purposes. The supposition seemed to be confirmed by the fact that the inclu-

sion of the 2s and 3s states (Reference 4) increased the static phase shifts by less than 4 percent.



Therefore,in thefirst instanceweusedthels-2s-3s approximationfor %(0):

3

(1)0(0) = _ un (rl)Rns (r2)
n=l

(16)

The integrals in the above development could then be evaluated. In order to satisfy the dipole sum rule

(Equation 10a) we found it necessary to augment ¢1_°). Let _ be the phase shift of the problem defined

by the coupled set (Equation 8). The, according to the above development,

r< 2 _ _o(°) --C_ (0)2 4Po(O) ,p/O)d r dr 2 + gdrldr2
sin(_- 8o) - k_- U 1 r_ 1 ' (17)

At k = 0.2 we obtained the values 0.1414 and 0.0042 for the two terms on the right side of Equation 17.

With 5o =-0.1102 as given by the above %(% we obtained

"_ : SO + sin -x (0.1456) : 0.0359 .

The value of s obtained by Spruch and Rosenberg (Reference 1) at k = 0.2 is 0.150. This value can be

taken as a reliable (but not rigorous) lower bound on the phase shift. As mentioned previously, the

multipole expansion cannot be expected to converge as dramatically as in the electron-hydrogen case;

nevertheless the difference between these two numbers seemed greater than could be attributed to

higher multipoles.

To check this, we computed several terms of Equation 7 using the appropriate projections of the

Spruch-Rosenberg wave function (Reference 1)to obtain¢_ and using Equation 16 for %(0). The results

for k = 0.2 are given in Table 2. The last row is obtained from Equation7 using the first three terms

and the appropriate value of 8o (in the z = 0 row). This 8 is reasonably close to 0.150 which 8pruch

and Rotenberg obtained from their complete calculation. The results indicate that the contribution of

the higher multipoles is fairly small--although not negligible--and that the main discrepancy is in the

dipole contribution: 0.194 versus our 0.146. There could be many causes for this discrepancy and

for the apparent consistency of the Spruch-Rosenberg wave function with the Smith-Burke %(o). As

far as the present calculation was concerned, it was felt after much delibration that the approximation

(Equation 16) for ¢0_°) must somehow be inadequate.

This supposition has very recently been markedly supported by the work of Rotenberg (Reference

3). Insofar as it bears on the zeroth order problem, his expansion is of the form of Equation 16 with

the hydrogenic functions Rns (r2) replaced by the Sturmian functions sn0 (r2) • In this approximation

3

(Po(°) : _ u (r,) S o (r2) (18)
n=l



Table 2

Results of Spruch-Rosenberg
Wave Function for k -- 0.2.

Multipole/

(radians) _[ Integral
0 -0.1102

1 0.194
!
i
!

2 i 0.0377
I
1

3 O.00947

J
I

[ 0.131

S,o (r2) is identical to R,_, and the remaining Sturmian functions (with

our normalization) are:

S2o{r) 21/22 e -_ (r - r 2) ,

Sso(r) 2(3) -1/2 e-r(3r-6r2+2r 3)

The chief property of the Sturmian function is that they are a complete

set without a continuous spectrum (Reference 3). The effect of this

expansion on the zeroth order phase shift can be gleaned from the

first three columns of row b, Table 3 (taken from Table II of Refer-

ence 3) for k = 0.2. The first three columns refer to the zeroth order

Table 3

Effect of Adding Terms.

Type
of Function

1 2 3

- 0.041 - 0.022Sturmian
(row b)

Hydrogenlc
(row c)

- O.067

4

-0.1145 -0.1109 - 0.1102

Total Number of Terms*

4 5 6 7 8

l

0.057 0.093 0.195 i 0.212 0.232

- I _ _ _ i _
i

!
I _ I

*Taken successively as (n, L) : (1, 0), (2, 0), (3, 0), (2, 1), (3, 1), (4, 1),(3, 2), (4, 2).

problem, and are to be compared to successive augmentation of the hydrogenic wave functions ls, 2s,

3s in the close coupling expansion row c (Reference 4). Then, according to Rotenberg's results, the

convergence of the close-coupling expansion is spurious, and the correct zeroth order phase shift is

much less negative than had hitherto been thought.* Using Equation 18 for q,o<°), we obtain from the

nonadiabatic theory, as outlined above, the contributions 0.227 and 0.0169 for the two terms of Equa-

tion 17. This in turn yields a _" = 0.224.

The calculation was repeated using the Ansatz

o 0, 2*',/r,/ ).... e r2 + r ,

r12 +D 2/

where u, (r,) is first function in Equation 18. In this case we obtained the values .222 and .0172 and

a final 7 = 0.219. These results agree to two figures and are compared with the entry in column 6

*Nevertheless, as long as the phase shifts are negative, we can find a physical rationalization for the result; the part of the positron's wave

function inside the orbital electron makes the latter see effectively a more positively charged nucleus. This makes the electron more

tightly bound; thus the part of the positron's wave function outside of the electron sees a repulsive but much smaller structure, giving rise

to negative but smaller (in absolute value) phase shifts. It is evident that such a picture corresponds to a highly nonadiabatic situation.

10



(_ = 0.195)of Table 3. Up to this point only relative s- and p-states have been included; so that,

through column 6, Rotenberg approximates the solution of the coupled set (Equations 8).The compari-

son shows that with the inclusion of three (n, i)terms he has almost obtained convergence, relative to

having ¢o described by three (n, 0) terms. The subsequent addition of d-wave terms gives an addi-

tional contribution 0.037 to his phase shift.This agrees identicallyto the i = 2 contribution (Table 2)

of the Spruch-Rosenberg wave function. The exact agreement is undoubtedly coincidental, but itadds

confidence that this contribution, too, is well represented by the Sturmian expansion.

It follows that, if the Sturmian expansion (Equation 18) for ,I,oc°) is essentially correct, then Roten-

berg's phase shifts are more correct than those of Schwartz (Reference 2; see also Table 1) and that

the former are very likely a lower bound.

Two questions immediately present themselves. First, how adequate is the Sturmian expansion

of 4,o(O)? The lack of convergence of Rotenberg's results is most noticeable in his zeroth order re-

sults. Indeed, naively extrapolating the first three columns of Table 3 might lead to a positive zeroth

order phase shift-a conclusion which, in view of the physical interpretation of the zeroth order prob-

lem, is almost inconceivable. We suspect that the convergence of the Sturmian expansion is exceed-

ingly rapid, so that within the addition of the first couple of terms the phase shift rapidly approaches

the converged value and that the change, after a couple of terms have been added, is very small. If

this is the case, then we must sincerely applaud this remarkable expansion. For the present, how-

ever, the possibility cannot be excluded that the inclusion of more (n, 0) Sturmian functions will make

the phase shift retreat towards the close-coupling value.

The second question is, if Rotenberg's results (Reference 3) are basically correct, how can

Schwartz's results (with many parameters) be so incorrect? This is a difficult question to answer.

However, it should be noted that the number of terms in his wave function relating exclusively to the

zeroth order problem is not overly great. Therefore his calculation may be inadequate precisely be-

cause it does not describe sufficiently the correlations of the zeroth order problem. If this is the

case, it provides an additional reason for considering the zeroth order problem separately from the

remainder of the scattering problem--which is the essence of the nonadiabatic theory.

In the recent work of Reference 8, an adiabatic polarization potential (r :,/r 4, where

ct{r' = --- e -2r 3r 4 + 6r 3 + 9r 2 + 9r _ '
r 2

is used in place of the phenomenological potential _/(r 2 + d 2) 2. The latter was derived (Reference 9)*

specifically for the problem of electron-hydrogen scattering (Reference 10)as a prototype of electron-

atom scattering (Reference 11). In that case it was shown (Reference 6) that, beyond the spherically

symmetric zeroth-order approximation, the phase shift is dominated by the dipole correction. Now the

*The potential a(r)/r 4 was derived by multiplying the adiabatic dipole term in the wave function by a step function. This function has a dis-

continuity in value and an infinite discontinuity in slope at r 1 = r2 • Both these features are removed in the e--H problem by (anti) sym-

metrizing the total wave function. However, in the e+-H problem, the ansatz for the wave function retains these unpleasant features, since

there is no symmetrization.

11



_Ir l/r 4 potential goes to zero at r = 0 whereas the _/(r2 + d2) 2 potential does not (see Figure 1). Thus

the effect of the attraction in the former is suppressed for small r and phenomenologically simulates

the contribution of only the dipole (: = 1) term in the nonadiabatic description. However, from Table

2 it is clear that in positron-hydrogen scattering a significant contribution comes from the higher

relative partial waves. The stronger dependence of the _/(r 2 ÷ d 2) 2 potential near the origin appears

better suited to simulate this contribution.

NONADIABATIC THEORY OF HIGHER PARTIAL WAVE SCATTERING

Let _'L be the wave function of the partial wave of angular momentum L. For the elastic scatter-

ing problem,

sin kr 1 _-_! + _(L R1S(r2)

lit2 *L : r, YLo(F2,) r 2 Yo oCt2)
17 ] _m

We can expand this wave function

q/L rl r2 L1 _2 _1 (19)
_ 1' _'2 ml

where (/1 ; 2 ml m2 f LM) are the Clebsh-Gordon coefficients in the notation of Condon and Shortley (Ref-

erence 7). With this expansion the Schr6dinger equation can be reduced to

f /, (/1 _ 1) 12(12 +1) 2 2',2 - _,_ - _ -_-Z_-

where

2 2 i::1)(L,)* E _ _ /2_2_ 2 /1 ! ,_L_ = _ t _2 r__2 ,,_, k. _lA2 '

A 1 , 'k 2

(20)

- y _ d_ 2m 1 LO Y" m (_1) -- lml : 2 \ I \ [ 1 2 _ I 1 rl 2 1

The quantities [ _, :2, and L must satisfy the usual triangular equality. In addition l l ÷ ;2 and L

must have the same parity. From Equation 20 it is clear that the effective centrifugal barrier which

a given ¢(L) sees is determined by l_ ÷ 12. For a given L (L / 0) there are two functions which are

associated with the lowest centifugal barrier (l I ÷ ! 2 = L), coL(0L) and ¢0(Lu). The rule of parity then says

that the next functions which enter the expansion (Equation 19) must have a centrifugal barrier two

units greater than L. Thus we have a powerful argument that the higher partial wave scattering is de-

termined mainly by the coupled set of equations for the lowest two functions.

12



Applying this approximation to p-wave scattering (and suppressing the superscript 1), we get:

2 2 2 2 E) 2 r<

2 2 2 2 E) 2 r_ (21)

where the boundary conditions are

lira ¢1o : sin(ki, + "_(L)_ 2) Rl " (r2) '

rl_m

lira ¢01 : 0 , (22)
rl _co

plus the vanishing of these functions in all other asymptotic regions.

Now since both %0 and %1 are associated with the same amount of centifugal barrier, we expect

a reliable solution will be reasonably simultaneous. As a very first approximation, however, we may

note that there is a great asymmetry in the boundary conditions, Equation 22, and between _10 and %1,

leading to the qualitative expectation that the former function is dominant over the latter. Within this

approximation we could consider a zeroth order problem:

( 2 2 2 2 )$+-- + -- + E : 0 (23)
_12 r12 r 1 r 2 r> 10 '

with the asymptotic solution

lim

rl-m

(I)10 : sin kr I - _- + 8o(1) Rl,(ra)

We can then readily derive

sin _(1) _ 8(1) : 3--k dPlo -- 0%1 drl dr2 (24)r >a

from Equations 21 and 23. Equation 24 is exact; the approximation comes in when we replace ¢ol by
o

the approximation ¢o l , which is governed by

2 2 2 2 )o _ 2 r o_12 r_ r, + r2- + _> + E q)o, - - 3-r- 7 (1)1o "
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From this equationandEquation23,weobtain

f:f o (2 2)0 2 ;f (_)_ r<(I)10 r_ r12 *01 dr2 dr2 : 3 lo r7 drl ,tr_ (25)

The following approximations are used in solving for _<13.

o (kr 1)q31o - kr l J 1

where
J l (kr) iS the spherical Bessel function and, by implication,_o (1) = 0; and

_oi 3 r12 + D

which is the adiabatic form of %,. In principal D is to be determined by the satisfaction of Equation
0

25. Actually we were unable to satisfy the sum rule with _01 in the above form. Therefore we had to

change ¢o_ to ¢0,:

(l)Ol = (I)01 1 + Cg(r 1 r 2 ,

where g(r, r2) is given in Equation 15, D was chosen as unity, and c was varied to give equality. We

can now determine _<') by using

7(1) _: _" _blo r_- qboldrldr2 .

In obtaining these results we have thus made two approximations. The first is the replacement

of the exact p-wave equation by the truncated set (Equation 21), which is equivalent to neglecting the

difference between s<' ) and _( _ ). We would expect that this would not introduce an error of more

than 25 percent-erring on the small side. We have also approximated the solution of Equation 21.

However, in this case _0( 1 ) is an over-estimate of the exact ,;0( I ), which must surely be negative.

On the whole therefore the final phase shifts in Table 4 can reasonably be expected to be within a

factor 2 of the exact p-wave phase shifts. The discrepancy with Bransden's phase shifts (Reference

12, and also Table 4) is generally greater than this amount.

The phase shifts are essentially negligible as far as the total cross section is concerned. The

s-wave cross sections are presented in Figure 4. It can be seen that it will be very difficult to dis-

tinguish experimentally between the results of Schwartz and Rotenberg. (There is a remote possibil-

ity at 0.5 ev.) On the other hand, in the region of the minimum (5 ev) the p-wave will yield a cross

section of less than 0.5 _,a02 whereas, according to Bransden, the cross section should be about _va02.

This second case should be experimentally distinguishable.

14



Table 4

p-Wave Phase Shifts.

k Phase Shift (radians)

(ryd 1/2) Nonadiabatic Reference 12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00219

0.00931

0.0181

0.0277

0.0371

0.04565

0.0531

0.016

0.104

0.167
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Appendix A

List of Symbols

P,(cos'_'1.)

r
I

r2

Legendre polynomials of order t of cos _J_2.

The distance of positron from the nucleus.

The distance of electron from the nucleus.

The s-eigenstates of hydrogen; in particular R_(r2) 2r

Exact s-wave phase shift.

Phase shift of the zeroth order problem; that is,

lim ,(o)(r,, r2) = sin(kr, + _o)R,_ (r2)

Flute

-'2 is the ground state.
2

U
12

_b t (rl r2)

The angle between the lines connecting electron and positron to the nucleus.

Functions in the basic expansion of

1 2
;=0

c2_+ii'"¢, (.,,.,)P;(_o.o,,)

V (r 1 r 2 012 ) Solution of the s-wave scattering problem.

So (r2) The Sturmian functions of order no.

NA_A-_.._,.,',1_3 G-292
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